Identification of cancer prognosis-associated functional modules using differential co-expression networks
نویسندگان
چکیده
The rapid accumulation of cancer-related data owing to high-throughput technologies has provided unprecedented choices to understand the progression of cancer and discover functional networks in multiple cancers. Establishment of co-expression networks will help us to discover the systemic properties of carcinogenesis features and regulatory mechanisms of multiple cancers. Here, we proposed a computational workflow to identify differentially co-expressed gene modules across 8 cancer types by using combined gene differential expression analysis methods and a higher-order generalized singular value decomposition. Four co-expression modules were identified; and oncogenes and tumor suppressors were significantly enriched in these modules. Functional enrichment analysis demonstrated the significantly enriched pathways in these modules, including ECM-receptor interaction, focal adhesion and PI3K-Akt signaling pathway. The top-ranked miRNAs (mir-199, mir-29, mir-200) and transcription factors (FOXO4, E2A, NFAT, and MAZ) were identified, which play an important role in deregulating cellular energetics; and regulating angiogenesis and cancer immune system. The clinical significance of the co-expressed gene clusters was assessed by evaluating their predictability of cancer patients' survival. The predictive power of different clusters and subclusters was demonstrated. Our results will be valuable in cancer-related gene function annotation and for the evaluation of cancer patients' prognosis.
منابع مشابه
Identification of Prognostic Genes in Her2-enriched Breast Cancer by Gene Co-Expression Net-work Analysis
Introduction: HER2-enriched subtype of breast cancer has a worse prognosis than luminal subtypes. Recently, the discovery of targeted therapies in other groups of breast cancer has increased patient survival. The aim of this study was to identify genes that affect the overall survival of this group of patients based on a systems biology approach. Methods: Gene expression data and clinical infor...
متن کاملPrognostic genes of breast cancer revealed by gene co-expression network analysis
The aim of the present study was to identify genes that may serve as markers for breast cancer prognosis by constructing a gene co-expression network and mining modules associated with survival. Two gene expression datasets of breast cancer were downloaded from ArrayExpress and genes from these datasets with a coefficient of variation >0.5 were selected and underwent functional enrichment analy...
متن کاملGene co-expression network reveals shared modules predictive of stage and grade in serous ovarian cancers
Serous ovarian cancer (SOC) is the most lethal gynecological cancer. Clinical studies have revealed an association between tumor stage and grade and clinical prognosis. Identification of meaningful clusters of co-expressed genes or representative biomarkers related to stage or grade may help to reveal mechanisms of tumorigenesis and cancer development, and aid in predicting SOC patient prognosi...
متن کاملConstructing module maps for integrated analysis of heterogeneous biological networks Running title: From heterogeneous networks to module maps
Improved methods for integrated analysis of heterogeneous large-scale omic data are direly needed. Here we take a network-based approach to this challenge. Given two networks, representing different types of gene interactions, we construct a map of linked modules, where modules are genes strongly connected in the first network and links represent strong inter-module connections in the second. W...
متن کاملDiscovering Distinct Functional Modules of Specific Cancer Types Using Protein-Protein Interaction Networks
BACKGROUND The molecular profiles exhibited in different cancer types are very different; hence, discovering distinct functional modules associated with specific cancer types is very important to understand the distinct functions associated with them. Protein-protein interaction networks carry vital information about molecular interactions in cellular systems, and identification of functional m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017